====================================== LIPSIA 3.1.1: fMRI analysis tools ====================================== Lipsia is a collection of tools for the analysis of functional magnetic resonance imaging (fMRI) data. Its primary focus lies in implementing novel algorithms, including laminar-specific fMRI analysis (:doc:`cylarim `), statistical inference (:doc:`LISA `), and Eigenvector centrality mapping (:doc:`ECM `). Lipsia is designed with a focus on compactness and ease of installation, making it readily accessible for researchers to incorporate these advanced analysis methods into their workflows. The code is available on GitHub: `GitHub `_. If you like lipsia, please go to the repository and star it! .. raw:: html Star Installation and first steps: ------------------------------------ :doc:`Installation ` and :doc:`Getting started ` Layer-specific fMRI analysis: ------------------------------------ :doc:`Cylarim ` Statistical inference: ------------------------------------ :doc:`LISA ` Semi-blind machine learning: ------------------------------------ :doc:`SML ` Task-related edge density (TED): ------------------------------------ :doc:`TED ` Network tools: ------------------------------------ - :doc:`ECM ` - :doc:`CCM ` - :doc:`BCM ` __________________________________________________________________ Credits ------- If you use Lipsia in your research, please cite the relevant publications: `Lohmann et al (2023) “Improving the reliability of fMRI-based predictions of intelligence via semi-blind machine learning”, bioRxiv `_ .. code-block:: latex @article{Lohmann2023, title = {Improving the reliability of fMRI-based predictions of intelligence via semi-blind machine learning}, url = {http://dx.doi.org/10.1101/2023.11.03.565485}, DOI = {10.1101/2023.11.03.565485}, publisher = {Cold Spring Harbor Laboratory}, author = {Lohmann, Gabriele and Heczko, Samuel and Mahler, Lucas and Wang, Qi and Steiglechner, Julius and Kumar, Vinod J. and Roost, Michelle and Jost, J\"{u}rgen and Scheffler, Klaus}, year = {2023}, month = nov } `Lohmann et al (2018) “LISA improves statistical analysis for fMRI”, Nature Comm `_ .. code-block:: latex @article{Lohmann2018, title = {LISA improves statistical analysis for fMRI}, volume = {9}, ISSN = {2041-1723}, url = {http://dx.doi.org/10.1038/s41467-018-06304-z}, DOI = {10.1038/s41467-018-06304-z}, number = {1}, journal = {Nature Communications}, publisher = {Springer Science and Business Media LLC}, author = {Lohmann, Gabriele and Stelzer, Johannes and Lacosse, Eric and Kumar, Vinod J. and Mueller, Karsten and Kuehn, Esther and Grodd, Wolfgang and Scheffler, Klaus}, year = {2018}, month = oct } `Lohmann, G. et al (2018), Eigenvector centrality mapping for ultrahigh resolution fMRI data of the human brain. bioRxiv `_ .. code-block:: latex @article{Lohmann2018, title = {Eigenvector centrality mapping for ultrahigh resolution fMRI data of the human brain}, url = {http://dx.doi.org/10.1101/494732}, DOI = {10.1101/494732}, publisher = {Cold Spring Harbor Laboratory}, author = {Lohmann, Gabriele and Loktyushin, Alexander and Stelzer, Johannes and Scheffler, Klaus}, year = {2018}, month = dec } `Lohmann et al (2012), “Connectivity Concordance Mapping: A New Tool for Model-Free Analysis of fMRI Data of the Human Brain.” Frontiers in Systems Neuroscience. 2012;6:13. `_ .. code-block:: latex @article{Lohmann2012, title = {Connectivity Concordance Mapping: A New Tool for Model-Free Analysis of fMRI Data of the Human Brain}, volume = {6}, ISSN = {1662-5137}, url = {http://dx.doi.org/10.3389/fnsys.2012.00013}, DOI = {10.3389/fnsys.2012.00013}, journal = {Frontiers in Systems Neuroscience}, publisher = {Frontiers Media SA}, author = {Lohmann, Gabriele and Ovadia-Caro, Smadar and Jungeh\"{u}lsing, Gerhard Jan and Margulies, Daniel S. and Villringer, Arno and Turner, Robert}, year = {2012} } `Lohmann, G. et al (2010), Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5(4) `_ .. code-block:: latex @article{Lohmann2010, title = {Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain}, volume = {5}, ISSN = {1932-6203}, url = {http://dx.doi.org/10.1371/journal.pone.0010232}, DOI = {10.1371/journal.pone.0010232}, number = {4}, journal = {PLoS ONE}, publisher = {Public Library of Science (PLoS)}, author = {Lohmann, Gabriele and Margulies, Daniel S. and Horstmann, Annette and Pleger, Burkhard and Lepsien, Joeran and Goldhahn, Dirk and Schloegl, Haiko and Stumvoll, Michael and Villringer, Arno and Turner, Robert}, editor = {Sporns, Olaf}, year = {2010}, month = apr, pages = {e10232} } .. toctree:: :hidden: :caption: Getting started overview install .. toctree:: :hidden: :caption: Laminar-specific fMRI (Cylarim) cylarim/index cylarim/vcylarim cylarim/vcylarim_stats cylarim/vcylarim_plot cylarim/vcylarim_getmask cylarim/vmetric cylarim/vrim .. toctree:: :hidden: :caption: LISA statistical inference stats/vlisa_generic stats/vlisa_2ndlevel stats/vlisa_onesample stats/vlisa_twosample stats/vlisa_precoloring stats/vlisa_prewhitening .. toctree:: :hidden: :caption: Semi-blind machine learning (SML): sml/vsml sml/vreadconnectome sml/vsml_statistics .. toctree:: :hidden: :caption: Task-related edge density (TED) ted/vcuttrials ted/vted ted/vhubness ted/vtedfdr .. toctree:: :hidden: :caption: Network tools nets/vbcm nets/vccm nets/vecm .. toctree:: :hidden: :caption: Preprocessing prep/vdetrend prep/vpreprocess .. toctree:: :hidden: :caption: File format converters conv/vdicom conv/vnifti .. toctree:: :hidden: :caption: Utilities utils/vapplymask utils/vdenoise utils/vsrad stats/designformat stats/designformat_first stats/designformat_higher